107 research outputs found

    Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm

    Get PDF
    Given an undirected graph and two disjoint vertex pairs s1,t1s_1,t_1 and s2,t2s_2,t_2, the Shortest two disjoint paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting s1s_1 with t1t_1, and s2s_2 with t2t_2, respectively. We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial size and polylogarithmic depth, that compute the S2DP and moreover also output the number of such minimum length path pairs. Previously, to the best of our knowledge, no deterministic polynomial time algorithm was known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast, the randomized polynomial time algorithm by Bj\"orklund and Husfeldt, ICALP 2014, for general graphs is much slower, is serial in nature, and cannot count the solutions. Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a generalisation of S2DP, and fast algorithms for counting perfect matchings in planar graphs

    Computing Graph Distances Parameterized by Treewidth and Diameter

    Get PDF
    We show that the eccentricity of every vertex in an undirected graph on n vertices can be computed in time n exp O(k*log(d)), where k is the treewidth of the graph and d is the diameter. This means that the diameter and the radius of the graph can be computed in the same time. In particular, if the diameter is constant, it can be determined in time n*exp(O(k)). This result matches a recent hardness result by Abboud, Vassilevska Williams, and Wang [SODA 2016] that shows that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane [J. Comp. Syst. Sc., 2001], for any epsilon > 0, no algorithm with running time n^{2-epsilon}*exp(o(k)) can distinguish between graphs with diameter 2 and 3

    Multivariate Analysis of Orthogonal Range Searching and Graph Distances

    Get PDF
    We show that the eccentricities, diameter, radius, and Wiener index of an undirected n-vertex graph with nonnegative edge lengths can be computed in time O(n * binom{k+ceil[log n]}{k} * 2^k k^2 log n), where k is the treewidth of the graph. For every epsilon>0, this bound is n^{1+epsilon}exp O(k), which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form log^d n to binom{d+ceil[log n]}{d}, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number

    Hardness Results for Dynamic Problems by Extensions of Fredman and Saks’ Chronogram Method

    Get PDF
    We introduce new models for dynamic computation based on the cell probe model of Fredman and Yao. We give these models access to nondeterministic queries or the right answer +-1 as an oracle. We prove that for the dynamic partial sum problem, these new powers do not help, the problem retains its lower bound of  Omega(log n/log log n). From these results we easily derive a large number of lower bounds of order Omega(log n/log log n) for conventional dynamic models like the random access machine. We prove lower bounds for dynamic algorithms for reachability in directed graphs, planarity testing, planar point location, incremental parsing, fundamental data structure problems like maintaining the majority of the prefixes of a string of bits and range queries. We characterise the complexity of maintaining the value of any symmetric function on the prefixes of a bit string

    Narrow sieves for parameterized paths and packings

    Full text link
    We present randomized algorithms for some well-studied, hard combinatorial problems: the k-path problem, the p-packing of q-sets problem, and the q-dimensional p-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter (k, p, q) and using polynomial space; the constant bases of the exponentials are significantly smaller than in previous works. For example, for the k-path problem the improvement is from 2 to 1.66. We also show how to detect if a d-regular graph admits an edge coloring with dd colors in time within a polynomial factor of O(2^{(d-1)n/2}). Our techniques build upon and generalize some recently published ideas by I. Koutis (ICALP 2009), R. Williams (IPL 2009), and A. Bj\"orklund (STACS 2010, FOCS 2010)

    Polynomial fixed-parameter algorithms : a case study for longest path on interval graphs.

    Get PDF
    We study the design of fixed-parameter algorithms for problems already known to be solvable in polynomial time. The main motivation is to get more efficient algorithms for problems with unattractive polynomial running times. Here, we focus on a fundamental graph problem: Longest Path; it is NP-hard in general but known to be solvable in O(n^4) time on n-vertex interval graphs. We show how to solve Longest Path on Interval Graphs, parameterized by vertex deletion number k to proper interval graphs, in O(k^9n) time. Notably, Longest Path is trivially solvable in linear time on proper interval graphs, and the parameter value k can be approximated up to a factor of 4 in linear time. From a more general perspective, we believe that using parameterized complexity analysis for polynomial-time solvable problems offers a very fertile ground for future studies for all sorts of algorithmic problems. It may enable a refined understanding of efficiency aspects for polynomial-time solvable problems, similarly to what classical parameterized complexity analysis does for NP-hard problems

    Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

    Full text link
    We show that the eccentricities, diameter, radius, and Wiener index of an undirected nn-vertex graph with nonnegative edge lengths can be computed in time O(n(k+lognk)2kk2logn)O(n\cdot \binom{k+\lceil\log n\rceil}{k} \cdot 2^k k^2 \log n), where kk is the treewidth of the graph. For every ϵ>0\epsilon>0, this bound is n1+ϵexpO(k)n^{1+\epsilon}\exp O(k), which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form logdn\log^d n to (d+lognd)\binom{d+\lceil\log n\rceil}{d}, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number
    corecore